- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Mucllari, Edison (4)
-
Ye, Qiang (4)
-
Cao, Yue (2)
-
Zadorozhnyy, Vasily (2)
-
Zhang, YuMing (2)
-
Nguyen, Duc (1)
-
Nguyen, Duc Duy (1)
-
Pospisil, Cole (1)
-
Yu, Rui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, using orthogonal matrices has been shown to be a promising approach to improving recurrent neural networks (RNNs) with training, stability, and convergence, particularly to control gradients. While gated recurrent unit (GRU) and long short-term memory (LSTM) architectures address the vanishing gradient problem by using a variety of gates and memory cells, they are still prone to the exploding gradient problem. In this work, we analyze the gradients in GRU and propose the use of orthogonal matrices to prevent exploding gradient problems and enhance long-term memory. We study where to use orthogonal matrices and propose a Neumann series–based scaled Cayley transformation for training orthogonal matrices in GRU, which we call Neumann-Cayley orthogonal GRU (NC-GRU). We present detailed experiments of our model on several synthetic and real-world tasks, which show that NC-GRU significantly outperforms GRU and several other RNNs.more » « lessFree, publicly-accessible full text available November 19, 2025
-
Mucllari, Edison; Cao, Yue; Ye, Qiang; Zhang, YuMing (, Journal of Manufacturing Processes)
-
Mucllari, Edison; Yu, Rui; Cao, Yue; Ye, Qiang; Zhang, YuMing (, IEEE Robotics and Automation Letters)
-
Mucllari, Edison; Zadorozhnyy, Vasily; Ye, Qiang; Nguyen, Duc Duy (, Journal of Chemical Information and Modeling)
An official website of the United States government
